A rigidity theorem in Alexandrov spaces with lower curvature bound
نویسندگان
چکیده
منابع مشابه
A Splitting Theorem for Alexandrov Spaces
A classical result of Toponogov [12] states that if a complete Riemannian manifold M with nonnegative sectional curvature contains a straight line, thenM is isometric to the metric product of a nonnegatively curved manifold and a line. We then know that the Busemann function associated with the straight line is an affine function, namely, a function which is affine on each unit speed geodesic i...
متن کاملHeat Kernel Comparison on Alexandrov Spaces with Curvature Bounded Below
In this paper the comparison result for the heat kernel on Riemannian manifolds with lower Ricci curvature bound by Cheeger and Yau [CY81] is extended to locally compact path metric spaces (X, d) with lower curvature bound in the sense of Alexandrov and with sufficiently fast asymptotic decay of the volume of small geodesic balls. As corollaries we recover Varadhan’s short time asymptotic formu...
متن کاملLorentz and Semi-riemannian Spaces with Alexandrov Curvature Bounds
A semi-Riemannian manifold is said to satisfy R ≥ K (or R ≤ K) if spacelike sectional curvatures are ≥ K and timelike ones are ≤ K (or the reverse). Such spaces are abundant, as warped product constructions show; they include, in particular, big bang Robertson-Walker spaces. By stability, there are many non-warped product examples. We prove the equivalence of this type of curvature bound with l...
متن کاملBarycenters in Alexandrov spaces of curvature bounded below
We investigate barycenters of probability measures on proper Alexandrov spaces of curvature bounded below, and show that they enjoy several properties relevant to or different from those in metric spaces of curvature bounded above. We prove the reverse variance inequality, and show that the push forward of a measure to the tangent cone at its barycenter has the flat support.
متن کاملA Convergence Theorem in the Geometry of Alexandrov Spaces
The fibration theorems in Riemannian geometry play an important role in the theory of convergence of Riemannian manifolds. In the present paper, we extend them to the Lipschitz submersion theorem for Alexandrov spaces, and discuss some applications. Résumé. Les théorèmes de fibration de la géométrie riemannienne jouent un rôle important dans la théorie de la convergence des variétés riemannienn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2011
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-011-0686-8